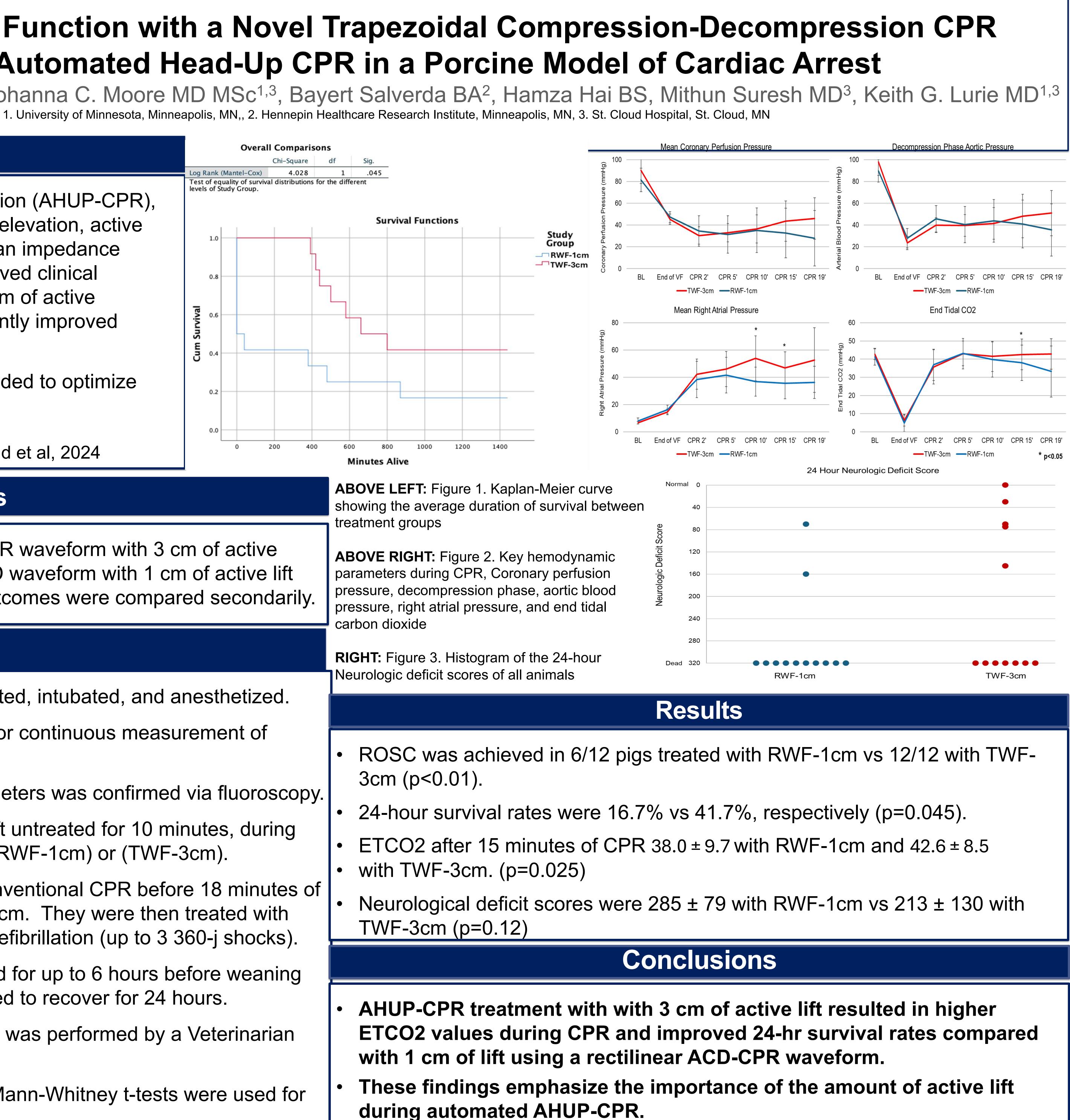
Survival and Neurological Function with a Novel Trapezoidal Compression-Decompression CPR Waveform during Automated Head-Up CPR in a Porcine Model of Cardiac Arrest

Pouria Pourzand MD¹, Anja Metzger PhD², Johanna C. Moore MD MSc^{1,3}, Bayert Salverda BA², Hamza Hai BS, Mithun Suresh MD³, Keith G. Lurie MD^{1,3}

Background


- Automated head-up cardiopulmonary resuscitation (AHUP-CPR), the combination of automated head and thorax elevation, active compression-decompression (ACD) CPR, and an impedance threshold device (ITD), is associated with improved clinical outcomes.^{1,2} A recent animal study showed 3 cm of active decompression plus an ITD resulted in significantly improved hemodynamics and stroke volume vs 1 cm.³
- The amount of active lift during AHUP-CPR needed to optimize survival is unknown.
- 1. Moore et al, 2020 2. Bachista et al., 2024 3. Pourzand et al, 2024

Hypothesis

Survival will be higher with a trapezoidal ACD-CPR waveform with 3 cm of active chest wall lift (TWF-3cm) versus a rectilinear ACD waveform with 1 cm of active lift (RWF-1cm). Hemodynamics and neurological outcomes were compared secondarily.

Methods

- 24 Female and male swine (~40 kg) were sedated, intubated, and anesthetized.
- Bilateral femoral arterial access was obtained for continuous measurement of central arterial and venous pressures.
- Placement of arterial and venous pressure catheters was confirmed via fluoroscopy.
- Ventricular Fibrillation (VF) was induced and left untreated for 10 minutes, during which they were randomized to receive either (RWF-1cm) or (TWF-3cm).
- Animals were then treated with 2 minutes of conventional CPR before 18 minutes of AHUP-CPR treatment with RWF-1cm or TWF-3cm. They were then treated with epinephrine (0.5mg), amiodarone (30mg) and defibrillation (up to 3 360-j shocks).
- If ROSC was achieved, animals were monitored for up to 6 hours before weaning from isoflurane anesthesia and, if stable, allowed to recover for 24 hours.
- 24 hours post-ROSC, a neurologic assessment was performed by a Veterinarian blinded to the treatment
- Student's T-test, Fisher's exact, log-rank, and Mann-Whitney t-tests were used for statistical comparison of the groups.

